Nanopteron solutions of diatomic Fermi–Pasta–Ulam–Tsingou lattices with small mass-ratio A Hoffman, JD Wright Physica D: Nonlinear Phenomena 358, 33-59, 2017 | 41 | 2017 |

Universality of crystallographic pinning A Hoffman, J Mallet-Paret Journal of Dynamics and Differential Equations 22 (2), 79-119, 2010 | 41 | 2010 |

Counter-propagating two-soliton solutions in the Fermi–Pasta–Ulam lattice A Hoffman, CE Wayne Nonlinearity 21 (12), 2911, 2008 | 41 | 2008 |

Entire solutions for bistable lattice differential equations with obstacles A Hoffman, H Hupkes, E Van Vleck American Mathematical Society 250 (1188), 2017 | 31 | 2017 |

Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model A Hoffman, CE Wayne Journal of Dynamics and Differential Equations 21, 343-351, 2009 | 29 | 2009 |

Characterizing traveling-wave collisions in granular chains starting from integrable limits: The case of the Korteweg–de Vries equation and the Toda lattice Y Shen, PG Kevrekidis, S Sen, A Hoffman Physical Review E 90 (2), 022905, 2014 | 26 | 2014 |

Multi-dimensional stability of waves travelling through rectangular lattices in rational directions A Hoffman, H Hupkes, E Van Vleck Transactions of the American Mathematical Society 367 (12), 8757-8808, 2015 | 22 | 2015 |

A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit A Hoffman, CE Wayne Infinite dimensional dynamical systems, 185-192, 2013 | 16 | 2013 |

Asymptotic stability of the Toda m-soliton GN Benes, A Hoffman, CE Wayne Journal of Mathematical Analysis and Applications 386 (1), 445-460, 2012 | 12 | 2012 |

Invasion fronts on graphs: the Fisher-KPP equation on homogeneous trees and Erd\H {o} sR\'eyni graphs A Hoffman, M Holzer arXiv preprint arXiv:1610.06877, 2016 | 11 | 2016 |

Orbital stability of localized structures via Bäcklund transformations A Hoffman, CE Wayne Differential Integral Equations 26 (3-4), 303-320, 2013 | 11 | 2013 |

Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations A Hoffman, B Kennedy arXiv preprint arXiv:0809.2059, 2008 | 5 | 2008 |

A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit A Hoffman, CE Wayne arXiv preprint arXiv:0811.2406, 2008 | 4 | 2008 |

Exit manifolds for lattice differential equations A Hoffman, JD Wright Proceedings of the Royal Society of Edinburgh Section A: Mathematics 141 (1 …, 2011 | 3 | 2011 |

Characterizing Traveling Wave Collisions in Granular Chains Starting from Integrable Limits: the case of the KdV and the Toda Lattice Y Shen, PG Kevrekidis, S Sen, A Hoffman arXiv preprint arXiv:1405.1768, 2014 | | 2014 |

Universality of Crystallographic Pinning J Mallet-Paret, A Hoffman arXiv preprint arXiv:0811.0093, 2008 | | 2008 |

Asymptotic two-soliton solutions solutions in the Fermi-Pasta-Ulam model A Hoffman, CE Wayne arXiv preprint arXiv:0809.3231, 2008 | | 2008 |

Crystallographic Pinning for Traveling Waves in Lattice Differential Equations: Generic Properties and Higher Codimension Phenomena A Hoffman ProQuest, 2006 | | 2006 |