Two-dimensional critical percolation: the full scaling limit F Camia, CM Newman Communications in Mathematical Physics 268 (1), 1-38, 2006 | 209 | 2006 |

Critical percolation exploration path and *SLE*_{6}: a proof of convergenceF Camia, CM Newman Probability theory and related fields 139 (3), 473-519, 2007 | 152 | 2007 |

Planar Ising magnetization field I. Uniqueness of the critical scaling limit F Camia, C Garban, CM Newman The Annals of Probability, 528-571, 2015 | 78 | 2015 |

A simple stochastic model for the dynamics of condensation JM Drouffe, C Godrèche, F Camia Journal of Physics A: Mathematical and General 31 (1), L19, 1998 | 71 | 1998 |

Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits F Camia, C Garban, CM Newman | 47 | 2016 |

Continuum nonsimple loops and 2D critical percolation F Camia, CM Newman Journal of statistical physics 116, 157-173, 2004 | 41 | 2004 |

The scaling limit geometry of near-critical 2D percolation F Camia, LRG Fontes, CM Newman Journal of statistical physics 125, 1155-1171, 2006 | 38 | 2006 |

SLE (6) and CLE (6) from Critical Percolation F Camia, CM Newman arXiv preprint math/0611116, 2006 | 36 | 2006 |

Two-dimensional scaling limits via marked nonsimple loops F Camia, LRG Fontes, CM Newman Bulletin of the Brazilian Mathematical Society 37, 537-559, 2006 | 34 | 2006 |

The full scaling limit of two-dimensional critical percolation F Camia, CM Newman arXiv preprint math/0504036, 2005 | 31 | 2005 |

Ising (conformal) fields and cluster area measures F Camia, CM Newman Proceedings of the National Academy of Sciences 106 (14), 5457-5463, 2009 | 30 | 2009 |

Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model F Camia, E De Santis, CM Newman The annals of applied probability 12 (2), 565-580, 2002 | 30 | 2002 |

Random walk loop soups and conformal loop ensembles T van de Brug, F Camia, M Lis Probability Theory and Related Fields 166, 553-584, 2016 | 26 | 2016 |

Universal behavior of connectivity properties in fractal percolation models E Broman, F Camia | 23 | 2010 |

A note on exponential decay in the random field Ising model F Camia, J Jiang, CM Newman Journal of Statistical Physics 173 (2), 268-284, 2018 | 22 | 2018 |

Conformal correlation functions in the Brownian loop soup F Camia, A Gandolfi, M Kleban Nuclear Physics B 902, 483-507, 2016 | 22 | 2016 |

Sharp phase transition and critical behaviour in 2D divide and colour models A Balint, F Camia, R Meester Stochastic Processes and their Applications 119 (3), 937-965, 2009 | 22 | 2009 |

The Ising magnetization exponent on is F Camia, C Garban, CM Newman Probability Theory and Related Fields 160, 175-187, 2014 | 21 | 2014 |

Exponential Decay for the Near‐Critical Scaling Limit of the Planar Ising Model F Camia, J Jiang, CM Newman Communications on Pure and Applied Mathematics 73 (7), 1371-1405, 2020 | 17 | 2020 |

A particular bit of universality: Scaling limits of some dependent percolation models F Camia, CM Newman, V Sidoravicius Communications in mathematical physics 246, 311-332, 2004 | 17 | 2004 |