Infiltration in porous media with dynamic capillary pressure: travelling waves C Cuesta, CJ van Duijn, J Hulshof European Journal of Applied Mathematics 11 (4), 381-397, 2000 | 123 | 2000 |

Numerical schemes for a pseudo-parabolic Burgers equation: discontinuous data and long-time behaviour CM Cuesta, IS Pop Journal of computational and applied mathematics 224 (1), 269-283, 2009 | 62 | 2009 |

A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves C Cuesta, J Hulshof Nonlinear Analysis: Theory, Methods & Applications 52 (4), 1199-1218, 2003 | 48 | 2003 |

Traveling Waves of a Kinetic Transport Model for the KPP-Fisher Equation CM Cuesta, S Hittmeir, S Christian SIAM Journal on Mathematical Analysis 44 (6), 4128–4146, 2012 | 27 | 2012 |

A pseudo-spectral method for a non-local KdV–Burgers equation posed on R F de la Hoz, CM Cuesta Journal of Computational Physics 311, 45-61, 2016 | 16 | 2016 |

A pseudospectral method for the one-dimensional fractional Laplacian on R J Cayama, CM Cuesta, F de la Hoz Applied Mathematics and Computation 389, 125577, 2021 | 15 | 2021 |

Travelling waves for a non-local Korteweg–de Vries–Burgers equation F Achleitner, CM Cuesta, S Hittmeir Journal of Differential Equations 257 (3), 720-758, 2014 | 15 | 2014 |

Front propagation in a heterogeneous Fisher equation: the homogeneous case is non-generic CM Cuesta, JR King Q J Mechanics Appl Math. 63 (4), 521-571, 2010 | 14 | 2010 |

Small-and waiting-time behavior of a darcy flow model with a dynamic pressure saturation relation CM Cuesta, JR King SIAM Journal on Applied Mathematics 66 (5), 1482-1511, 2006 | 10 | 2006 |

Weak shocks for a one-dimensional BGK kinetic model for conservation laws CM Cuesta, C Schmeiser SIAM journal on mathematical analysis 38 (2), 637-656, 2006 | 9 | 2006 |

Pseudo-parabolic equations with driving convection term C Cuesta | 9 | 2003 |

Numerical approximation of the fractional Laplacian on R using orthogonal families J Cayama, CM Cuesta, F de la Hoz Applied Numerical Mathematics 158, 164-193, 2020 | 8 | 2020 |

Non-classical shocks for Buckley-Leverett: Degenerate pseudo-parabolic regularisation CM Cuesta, CJ van Duijn, IS Pop Progress in Industrial Mathematics at ECMI 2004, 569-573, 2006 | 8 | 2006 |

Addendum to “Travelling waves for a non-local Korteweg–de Vries–Burgers equation”[J. Differential Equations 257 (3)(2014) 720–758] CM Cuesta, F Achleitner Journal of Differential Equations 262 (2), 1155-1160, 2017 | 7 | 2017 |

Kinetic profiles for shock waves of scalar conservation laws CM Cuesta, C Schmeiser BULLETIN-INSTITUTE OF MATHEMATICS ACADEMIA SINICA 2 (2), 391, 2007 | 7 | 2007 |

A non-local KdV-Burgers equation: Numerical study of travelling waves CM Cuesta Communications in Applied and Industrial Mathematics 6 (2), 2015 | 4 | 2015 |

Analysis of oscillations in a drainage equation CM Cuesta, JJL Velázquez SIAM Journal on Mathematical Analysis 44 (3), 1588-1616, 2012 | 4 | 2012 |

Linear stability analysis of travelling waves for a pseudo-parabolic Burgers’ equation CM Cuesta Dynamics of Partial Differential Equations 7 (1), 77-105, 2010 | 4 | 2010 |

Kinetic shock profiles for nonlinear hyperbolic conservation laws CM Cuesta, S Hittmeir, C Schmeiser Riv. Mat. Univ. Parma, 2009 | 4 | 2009 |

Vanishing viscosity limit of a conservation law regularised by a Riesz–Feller operator X Diez-Izagirre, CM Cuesta Monatshefte für Mathematik 192 (3), 513-550, 2020 | 3 | 2020 |