Binary relevance efficacy for multilabel classification O Luaces, J Díez, J Barranquero, JJ del Coz, A Bahamonde Progress in Artificial Intelligence 1, 303-313, 2012 | 313 | 2012 |
Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example F Goyache, JP Gutiérrez, I Fernández, E Gomez, I Álvarez, J Díez, ... Journal of Animal Breeding and Genetics 120 (2), 95-105, 2003 | 252 | 2003 |
Genetic relationships between calving date, calving interval, age at first calving and type traits in beef cattle JP Gutiérrez, I Álvarez, I Fernández, LJ Royo, J Dıez, F Goyache Livestock Production Science 78 (3), 215-222, 2002 | 157 | 2002 |
Learning nondeterministic classifiers JJ del Coz, J Díez, A Bahamonde The Journal of Machine Learning Research 10, 2273-2293, 2009 | 107 | 2009 |
The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry F Goyache, A Bahamonde, J Alonso, S López, JJ Del Coz, JR Quevedo, ... Trends in Food Science & Technology 12 (10), 370-381, 2001 | 106 | 2001 |
Quantification-oriented learning based on reliable classifiers J Barranquero, J Díez, JJ del Coz Pattern Recognition 48 (2), 591-604, 2015 | 84 | 2015 |
Automatic plankton quantification using deep features P González, A Castaño, EE Peacock, J Díez, JJ Del Coz, HM Sosik Journal of Plankton Research 41 (4), 449-463, 2019 | 70 | 2019 |
Feature subset selection for learning preferences: A case study A Bahamonde, GF Bayón, J Díez, JR Quevedo, O Luaces, JJ Del Coz, ... Proceedings of the twenty-first international conference on Machine learning, 7, 2004 | 70 | 2004 |
On the study of nearest neighbor algorithms for prevalence estimation in binary problems J Barranquero, P González, J Díez, JJ Del Coz Pattern Recognition 46 (2), 472-482, 2013 | 65 | 2013 |
Deep learning to frame objects for visual target tracking S Pang, JJ del Coz, Z Yu, O Luaces, J Díez Engineering Applications of Artificial Intelligence 65, 406-420, 2017 | 63 | 2017 |
Validation methods for plankton image classification systems P González, E Álvarez, J Díez, Á López‐Urrutia, JJ del Coz Limnology and Oceanography: Methods 15 (3), 221-237, 2017 | 60 | 2017 |
Peer assessment in MOOCs using preference learning via matrix factorization J Díez Peláez, Ó Luaces Rodríguez, A Alonso-Betanzos, A Troncoso, ... NIPS Workshop on Data Driven Education, 2013 | 50 | 2013 |
How to learn consumer preferences from the analysis of sensory data by means of support vector machines (SVM) A Bahamonde, J Díez, JR Quevedo, O Luaces, JJ del Coz Trends in food science & technology 18 (1), 20-28, 2007 | 49 | 2007 |
Why is quantification an interesting learning problem? P González, J Díez, N Chawla, JJ del Coz Progress in Artificial Intelligence 6, 53-58, 2017 | 46 | 2017 |
A peer assessment method to provide feedback, consistent grading and reduce students' burden in massive teaching settings O Luaces, J Díez, A Bahamonde Computers & Education 126, 283-295, 2018 | 43 | 2018 |
Artificial intelligence techniques point out differences in classification performance between light and standard bovine carcasses J Dıez, A Bahamonde, J Alonso, S López, JJ Del Coz, JR Quevedo, ... Meat Science 64 (3), 249-258, 2003 | 42 | 2003 |
A factorization approach to evaluate open-response assignments in MOOCs using preference learning on peer assessments O Luaces, J Díez, A Alonso-Betanzos, A Troncoso, A Bahamonde Knowledge-Based Systems 85, 322-328, 2015 | 41 | 2015 |
Using machine learning procedures to ascertain the influence of beef carcass profiles on carcass conformation scores J Díez, P Albertí, G Ripoll, F Lahoz, I Fernández, JL Olleta, B Panea, ... Meat Science 73 (1), 109-115, 2006 | 40 | 2006 |
Clustering people according to their preference criteria J Díez, JJ Del Coz, O Luaces, A Bahamonde Expert Systems with Applications 34 (2), 1274-1284, 2008 | 39 | 2008 |
Analyzing sensory data using non-linear preference learning with feature subset selection O Luaces, GF Bayón, JR Quevedo, J Díez, JJ Del Coz, A Bahamonde European Conference on Machine Learning, 286-297, 2004 | 37 | 2004 |