Heterogeneous Graph Structure Learning for Graph Neural Networks J Zhao, X Wang, C Shi, B Hu, G Song, Y Ye AAAI conference on artificial intelligence (AAAI21), 2021 | 253 | 2021 |
Network schema preserving heterogeneous information network embedding J Zhao, X Wang, C Shi, Z Liu, Y Ye International joint conference on artificial intelligence (IJCAI20), 2020 | 126 | 2020 |
Learning on Large-scale Text-attributed Graphs via Variational Inference J Zhao, M Qu, C Li, H Yan, Q Liu, R Li, X Xie, J Tang Eleventh International Conference on Learning Representations (ICLR23 oral), 2022 | 103 | 2022 |
Gophormer: Ego-graph transformer for node classification J Zhao, C Li, Q Wen, Y Wang, Y Liu, H Sun, X Xie, Y Ye arXiv preprint arXiv:2110.13094, 2021 | 66 | 2021 |
HousE: Knowledge Graph Embedding with Householder Parameterization R Li, J Zhao, C Li, D He, Y Wang, Y Liu, H Sun, S Wang, W Deng, Y Shen, ... International Conference on Machine Learning (ICML22), 2022 | 48 | 2022 |
Graphtext: Graph reasoning in text space J Zhao, L Zhuo, Y Shen, M Qu, K Liu, M Bronstein, Z Zhu, J Tang arXiv preprint arXiv:2310.01089, 2023 | 42 | 2023 |
Multi-view Self-supervised Heterogeneous Graph Embedding J Zhao, Q Wen, S Sun, Y Ye, C Zhang Machine Learning and Knowledge Discovery in Databases. Research European …, 2021 | 32 | 2021 |
Self-Supervised Graph Structure Refinement for Graph Neural Networks J Zhao, Q Wen, M Ju, C Zhang, Y Ye ACM International Conference on Web Search and Data Mining (WSDM23), 2022 | 23 | 2022 |
Adaptive Kernel Graph Neural Network M Ju, S Hou, Y Fan, J Zhao, L Zhao, Y Ye AAAI Conference on Artificial Intelligence (AAAI21), 2021 | 23 | 2021 |
Improving relevance modeling via heterogeneous behavior graph learning in bing ads B Pang, C Li, Y Liu, J Lian, J Zhao, H Sun, W Deng, X Xie, Q Zhang ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD22), 2022 | 19 | 2022 |
Test-time training for graph neural networks Y Wang, C Li, W Jin, R Li, J Zhao, J Tang, X Xie arXiv preprint arXiv:2210.08813, 2022 | 14 | 2022 |
Graph Foundation Models H Mao, Z Chen, W Tang, J Zhao, Y Ma, T Zhao, N Shah, M Galkin, J Tang ICML2024, 2024 | 13 | 2024 |
Prohibited item detection via risk graph structure learning Y Ji, G Chu, X Wang, C Shi, J Zhao, J Du The ACM Web Conference (WWW22), 2022 | 10 | 2022 |
Rxnet: Rx-refill graph neural network for overprescribing detection J Zhang, AT Kuo, J Zhao, Q Wen, E Winstanley, C Zhang, Y Ye ACM International Conference on Information & Knowledge Management (CIKM21), 2021 | 10 | 2021 |
A comprehensive study on text-attributed graphs: Benchmarking and rethinking H Yan, C Li, R Long, C Yan, J Zhao, W Zhuang, J Yin, P Zhang, W Han, ... Advances in Neural Information Processing Systems 36, 17238-17264, 2023 | 6 | 2023 |
To Copy Rather Than Memorize: A Vertical Learning Paradigm for Knowledge Graph Completion R Li, X Chen, C Li, Y Shen, J Zhao, Y Wang, W Han, H Sun, W Deng, ... ACL 2023 (main conference), 2023 | 4 | 2023 |
Position: Graph Foundation Models Are Already Here H Mao, Z Chen, W Tang, J Zhao, Y Ma, T Zhao, N Shah, M Galkin, J Tang Forty-first International Conference on Machine Learning, 0 | 4 | |
Coupled semi-supervised clustering: Exploring attribute correlations in heterogeneous information networks J Zhao, D Xiao, L Hu, C Shi Web and Big Data: Third International Joint Conference, APWeb-WAIM 2019 …, 2019 | 3 | 2019 |
GraphAny: A Foundation Model for Node Classification on Any Graph J Zhao, H Mostafa, M Galkin, M Bronstein, Z Zhu, J Tang arXiv preprint arXiv: 2405.20445, 2024 | 2 | 2024 |
Rx-refill Graph Neural Network to Reduce Drug Overprescribing Risks J Zhang, AT Kuo, J Zhao, Q Wen, EL Winstanley, C Zhang, Y Ye IJCAI, 5379-5383, 2022 | 1 | 2022 |