Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R2 T Gallay, CE Wayne Archive for Rational Mechanics and Analysis 163, 209-258, 2002 | 243 | 2002 |

Global stability of vortex solutions of the two-dimensional Navier-Stokes equation T Gallay, CE Wayne Communications in mathematical physics 255, 97-129, 2005 | 231 | 2005 |

Local stability of critical fronts in nonlinear parabolic partial differential equations T Gallay Nonlinearity 7 (3), 741, 1994 | 122 | 1994 |

Stability of small periodic waves for the nonlinear Schrödinger equation T Gallay, M Hãrãguº Journal of Differential Equations 234 (2), 544-581, 2007 | 114 | 2007 |

Orbital stability of periodic waves for the nonlinear Schrödinger equation T Gallay, M Hǎrǎgus Journal of dynamics and Differential Equations 19, 825-865, 2007 | 111 | 2007 |

Uniqueness for the two-dimensional Navier–Stokes equation with a measure as initial vorticity I Gallagher, T Gallay Mathematische Annalen 332, 287-327, 2005 | 91 | 2005 |

Long-time asymptotics of the Navier-Stokes and vorticity equations on ℝ^{3}T Gallay, E Wayne Philosophical Transactions of the Royal Society of London. Series A …, 2002 | 91 | 2002 |

Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator I Gallagher, T Gallay, F Nier International Mathematics Research Notices 2009 (12), 2147-2199, 2009 | 72 | 2009 |

Interaction of vortices in weakly viscous planar flows T Gallay Archive for rational mechanics and analysis 200, 445-490, 2011 | 51 | 2011 |

KP description of unidirectional long waves. The model case T Gallay, G Schneider Proceedings of the Royal Society of Edinburgh Section A: Mathematics 131 (4 …, 2001 | 51 | 2001 |

Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices T Gallay Archive for Rational Mechanics and Analysis 230, 939-975, 2018 | 47 | 2018 |

Scaling variables and stability of hyperbolic fronts T Gallay, G Raugel SIAM Journal on Mathematical Analysis 32 (1), 1-29, 2000 | 43 | 2000 |

On the uniqueness of the solution of the two‐dimensional Navier–Stokes equation with a Dirac mass as initial vorticity I Gallagher, T Gallay, PL Lions Mathematische Nachrichten 278 (14), 1665-1672, 2005 | 40 | 2005 |

Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations T Gallay, V ©verák Confluentes Mathematici 7 (2), 67-92, 2015 | 38 | 2015 |

Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves T Gallay, D Pelinovsky Journal of Differential Equations 258 (10), 3607-3638, 2015 | 37 | 2015 |

Existence and stability of asymmetric Burgers vortices T Gallay, CE Wayne Journal of Mathematical Fluid Mechanics 9, 243-261, 2007 | 35 | 2007 |

A variational proof of global stability for bistable travelling waves T Gallay, E Risler | 34 | 2007 |

Global stability of travelling fronts for a damped wave equation with bistable nonlinearity T Gallay, R Joly Annales scientifiques de l'Ecole normale supérieure 42 (1), 103-140, 2009 | 33 | 2009 |

Stable transport of information near essentially unstable localized structures T Gallay, G Schneider, H Uecker arXiv preprint math/0306335, 2003 | 31 | 2003 |

Diffusive mixing of stable states in the Ginzburg–Landau equation T Gallay, A Mielke Communications in mathematical physics 199 (1), 71-97, 1998 | 28 | 1998 |