Malte J Rasch
Malte J Rasch
Sony AI (previously: IBM Research AI)
Verified email at
Cited by
Cited by
A kernel two-sample test
A Gretton, KM Borgwardt, MJ Rasch, B Schölkopf, A Smola
The Journal of Machine Learning Research 13 (1), 723-773, 2012
A kernel method for the two-sample-problem
A Gretton, KM Borgwardt, M Rasch, B Schölkopf, AJ Smola
Advances in neural information processing systems, 513-520, 2006
Integrating structured biological data by kernel maximum mean discrepancy
KM Borgwardt, A Gretton, MJ Rasch, HP Kriegel, B Schölkopf, AJ Smola
Bioinformatics 22 (14), e49-e57, 2006
Phase-of-firing coding of natural visual stimuli in primary visual cortex
MA Montemurro, MJ Rasch, Y Murayama, NK Logothetis, S Panzeri
Current biology 18 (5), 375-380, 2008
A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus
L Wiskott, MJ Rasch, G Kempermann
Hippocampus 16 (3), 329-343, 2006
Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations
G Chen, Y Zhang, X Li, X Zhao, Q Ye, Y Lin, HW Tao, MJ Rasch, X Zhang
Neuron 96 (6), 1403-1418. e6, 2017
Inferring spike trains from local field potentials
MJ Rasch, A Gretton, Y Murayama, W Maass, NK Logothetis
Journal of neurophysiology 99 (3), 1461-1476, 2008
A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning
Y Li, J Xu, Y Liu, J Zhu, N Liu, W Zeng, N Huang, MJ Rasch, H Jiang, X Gu, ...
Nature neuroscience 20 (4), 559-570, 2017
Perceptual training continuously refines neuronal population codes in primary visual cortex
Y Yan+, MJ Rasch+, M Chen+, X Xiang, M Huang, S Wu, W Li*
Nature neuroscience 17 (10), 1380-1387, 2014
From neurons to circuits: linear estimation of local field potentials
M Rasch, NK Logothetis, G Kreiman
Journal of Neuroscience 29 (44), 13785-13796, 2009
A flexible and fast PyTorch toolkit for simulating training and inference on analog crossbar arrays
MJ Rasch, D Moreda, T Gokmen, M Le Gallo, F Carta, C Goldberg, ...
2021 IEEE 3rd international conference on artificial intelligence circuits …, 2021
A kernel approach to comparing distributions
A Gretton, KM Borgwardt, M Rasch, B Schölkopf, AJ Smola
Proceedings of the national conference on artificial intelligence 22 (2), 1637, 2007
A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference
M Le Gallo, R Khaddam-Aljameh, M Stanisavljevic, A Vasilopoulos, ...
Nature Electronics 6 (9), 680-693, 2023
Autapses enhance bursting and coincidence detection in neocortical pyramidal cells
L Yin, R Zheng, W Ke, Q He, Y Zhang, J Li, B Wang, Z Mi, Y Long, ...
Nature communications 9 (1), 4890, 2018
Training LSTM networks with resistive cross-point devices
T Gokmen, MJ Rasch, W Haensch
Frontiers in neuroscience 12, 402869, 2018
Decentralized multisensory information integration in neural systems
WH Zhang, A Chen, MJ Rasch, S Wu
Journal of Neuroscience 36 (2), 532-547, 2016
Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period
G Chen, MJ Rasch, R Wang, X Zhang
Scientific reports 5 (1), 17847, 2015
Selective modulation of axonal sodium channel subtypes by 5-HT1A receptor in cortical pyramidal neuron
L Yin, MJ Rasch, Q He, S Wu, F Dou, Y Shu
Cerebral Cortex 27 (1), 509-521, 2017
The face inversion effect in non-human primates revisited - an investigation in chimpanzees (Pan troglodytes)
CD Dahl, MJ Rasch, M Tomonaga, I Adachi
Scientific reports 3 (1), 2504, 2013
On-chip trainable 1.4 M 6T2R PCM synaptic array with 1.6 K stochastic LIF neurons for spiking RBM
M Ishii, S Kim, S Lewis, A Okazaki, J Okazawa, M Ito, M Rasch, W Kim, ...
2019 IEEE International Electron Devices Meeting (IEDM), 14.2. 1-14.2. 4, 2019
The system can't perform the operation now. Try again later.
Articles 1–20