Product-based neural networks for user response prediction Y Qu, H Cai, K Ren, W Zhang, Y Yu, Y Wen, J Wang ICDM 2016, 1149-1154, 2016 | 768 | 2016 |
Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games Y Wen*, P Peng*, Y Yang, Q Yuan, Z Tang, H Long, J Wang Emergent Communication Workshop, NIPS 2017, 2017 | 594 | 2017 |
Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning J Grudzien Kuba, R Chen, M Wen, Y Wen, F Sun, J Wang, Y Yang ICLR 2022, 2022 | 222* | 2022 |
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving M Zhou, J Luo, J Villela, Y Yang, D Rusu, J Miao, W Zhang, M Alban, ... CoRL 2020 (Best System Paper Award), 2020 | 206* | 2020 |
Probabilistic Recursive Reasoning for Multi-Agent Reinforcement Learning Y Wen, Y Yang, R Luo, J Wang, W Pan ICLR 2019, 2018 | 166 | 2018 |
Multi-Agent Reinforcement Learning is a Sequence Modeling Problem M Wen, JG Kuba, R Lin, W Zhang, Y Wen, J Wang, Y Yang NeurIPS 2022, 2022 | 158 | 2022 |
Offline pre-trained multi-agent decision transformer: One big sequence model tackles all smac tasks L Meng, M Wen, Y Yang, C Le, X Li, W Zhang, Y Wen, H Zhang, J Wang, ... Machine Intelligence Research, 2023 | 89 | 2023 |
Multi-Agent Determinantal Q-Learning Y Wen, Y Yang, L Chen, J Wang, K Shao, D Mguni, W Zhang ICML 2020, 2020 | 76* | 2020 |
Factorized q-learning for large-scale multi-agent systems M Zhou, Y Chen, Y Wen, Y Yang, Y Su, W Zhang, D Zhang, J Wang Proceedings of the first international conference on distributed artificial …, 2019 | 75 | 2019 |
Modelling Bounded Rationality in Multi-Agent Interactions by Generalized Recursive Reasoning Y Wen, Y Yang, J Wang The 29th International Joint Conference on Artificial Intelligence (IJCAI 2020), 2020 | 68 | 2020 |
Learning text representation using recurrent convolutional neural network with highway layers Y Wen, W Zhang, R Luo, J Wang Neu-IR 2016, SIGIR, 2016 | 67 | 2016 |
Towards unifying behavioral and response diversity for open-ended learning in zero-sum games X Liu, H Jia, Y Wen, Y Hu, Y Chen, C Fan, Z Hu, Y Yang Advances in Neural Information Processing Systems 34, 941-952, 2021 | 63* | 2021 |
Modelling behavioural diversity for learning in open-ended games N Perez-Nieves, Y Yang, O Slumbers, DH Mguni, Y Wen, J Wang International conference on machine learning, 8514-8524, 2021 | 63 | 2021 |
Learning in Nonzero-Sum Stochastic Games with Potentials D Mguni, Y Wu, Y Du, Y Yang, Z Wang, M Li, Y Wen, J Jennings, J Wang ICML 2021, 2021 | 56* | 2021 |
MALib: A Parallel Framework for Population-based Multi-agent Reinforcement Learning M Zhou, Z Wan, H Wang, M Wen, R Wu, Y Wen, Y Yang, W Zhang, ... JMLR, 2023 | 51 | 2023 |
Neural auto-curricula in two-player zero-sum games X Feng, O Slumbers, Z Wan, B Liu, S McAleer, Y Wen, J Wang, Y Yang Advances in Neural Information Processing Systems 34, 3504-3517, 2021 | 48* | 2021 |
A study of ai population dynamics with million-agent reinforcement learning Y Yang, L Yu, Y Bai, J Wang, W Zhang, Y Wen, Y Yu AAMAS 2018, 2017 | 46* | 2017 |
A Regularized Opponent Model with Maximum Entropy Objective Y Wen*, Z Tian*, Z Gong, F Punakkath, S Zou, J Wang The 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), 2019 | 45* | 2019 |
Diverse Auto-Curriculum is Critical for Successful Real-World Multiagent Learning Systems Y Yang, J Luo, Y Wen, O Slumbers, D Graves, HB Ammar, J Wang, ... AAMAS 2021, Blue Sky Track, Best Paper Award, 2021 | 38 | 2021 |
Alphazero-like tree-search can guide large language model decoding and training Z Wan, X Feng, M Wen, SM McAleer, Y Wen, W Zhang, J Wang Forty-first International Conference on Machine Learning, 2024 | 35 | 2024 |