Lump solutions to the Kadomtsev–Petviashvili equation WX Ma Physics Letters A 379 (36), 1975-1978, 2015 | 785 | 2015 |

A transformed rational function method and exact solutions to the 3+ 1 dimensional Jimbo–Miwa equation WX Ma, JH Lee Chaos, Solitons & Fractals 42 (3), 1356-1363, 2009 | 634 | 2009 |

A multiple exp-function method for nonlinear differential equations and its application WX Ma, T Huang, Y Zhang Physica Scripta 82 (6), 065003, 2010 | 629 | 2010 |

Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation WX Ma, B Fuchssteiner International Journal of Non-Linear Mechanics 31 (3), 329-338, 1996 | 606 | 1996 |

Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions WX Ma, Y You Transactions of the American mathematical society 357 (5), 1753-1778, 2005 | 565 | 2005 |

Integrable theory of the perturbation equations WX Ma, B Fuchssteiner Chaos, Solitons & Fractals 7 (8), 1227-1250, 1996 | 441 | 1996 |

Linear superposition principle applying to Hirota bilinear equations WX Ma, E Fan Computers & Mathematics with Applications 61 (4), 950-959, 2011 | 435 | 2011 |

Solving the (3+ 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm WX Ma, Z Zhu Applied Mathematics and Computation 218 (24), 11871-11879, 2012 | 419 | 2012 |

Complexiton solutions to the Korteweg–de Vries equation WX Ma Physics Letters A 301 (1-2), 35-44, 2002 | 363 | 2002 |

A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction WX Ma Chin. Ann. Math. A 13, 115-123, 1992 | 310 | 1992 |

Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras WX Ma, M Chen Journal of Physics A: Mathematical and General 39 (34), 10787, 2006 | 293 | 2006 |

An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems W Ma, W Strampp Physics Letters A 185 (3), 277-286, 1994 | 263 | 1994 |

Generalized bilinear differential equations WX Ma Stud. Nonlinear Sci 2 (4), 140-144, 2011 | 238 | 2011 |

Integrable couplings of soliton equations by perturbations I. A general theory and application to the KdV hierarchy WX Ma arXiv preprint solv-int/9912004, 1999 | 237 | 1999 |

Bilinear equations, Bell polynomials and linear superposition principle WX Ma Journal of Physics: Conference Series 411 (1), 012021, 2013 | 235 | 2013 |

Semidirect sums of Lie algebras and discrete integrable couplings WX Ma, XX Xu, Y Zhang Journal of Mathematical Physics 47 (5), 2006 | 223 | 2006 |

Integration of the soliton hierarchy with self-consistent sources Y Zeng, WX Ma, R Lin Journal of Mathematical Physics 41 (8), 5453-5489, 2000 | 223 | 2000 |

Enlarging spectral problems to construct integrable couplings of soliton equations WX Ma Physics Letters A 316 (1-2), 72-76, 2003 | 221 | 2003 |

A second Wronskian formulation of the Boussinesq equation WX Ma, CX Li, J He Nonlinear Analysis: Theory, Methods & Applications 70 (12), 4245-4258, 2009 | 215 | 2009 |

Direct search for exact solutions to the nonlinear Schrödinger equation WX Ma, M Chen Applied Mathematics and Computation 215 (8), 2835-2842, 2009 | 193 | 2009 |