Follow
Marianne Bessemoulin-Chatard
Marianne Bessemoulin-Chatard
Chargée de recherche CNRS, UMR6629, LMJL, Université de Nantes
Verified email at univ-nantes.fr
Title
Cited by
Cited by
Year
A finite volume scheme for nonlinear degenerate parabolic equations
M Bessemoulin-Chatard, F Filbet
SIAM Journal on Scientific Computing 34 (5), B559-B583, 2012
1332012
A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme
M Bessemoulin-Chatard
Numerische Mathematik 121 (4), 637-670, 2012
1022012
On discrete functional inequalities for some finite volume schemes
M Bessemoulin-Chatard, C Chainais-Hillairet, F Filbet
IMA Journal of Numerical Analysis 35 (3), 1125-1149, 2014
1002014
A finite volume scheme for a Keller–Segel model with additional cross-diffusion
M Bessemoulin-Chatard, A Jüngel
IMA Journal of Numerical Analysis 34 (1), 96-122, 2014
582014
Study of a finite volume scheme for the drift-diffusion system. asymptotic behavior in the quasi-neutral limit
M Bessemoulin-Chatard, C Chainais-Hillairet, MH Vignal
SIAM Journal on Numerical Analysis 52 (4), 1666-1691, 2014
422014
Study of a finite volume scheme for the drift-diffusion system. asymptotic behavior in the quasi-neutral limit
M Bessemoulin-Chatard, C Chainais-Hillairet, MH Vignal
SIAM Journal on Numerical Analysis 52 (4), 1666-1691, 2014
422014
Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems
M Bessemoulin-Chatard, C Chainais-Hillairet
Journal of Numerical Mathematics 25 (3), 147-168, 2017
332017
Asymptotic Behavior of the Scharfetter–Gummel Scheme for the Drift-Diffusion Model
M Chatard
Finite Volumes for Complex Applications VI Problems & Perspectives, 235-243, 2011
292011
Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations
M Bessemoulin-Chatard, M Herda, T Rey
arXiv preprint arXiv:1812.05967, 2018
282018
Numerical Convergence Rate for a Diffusive Limit of Hyperbolic Systems: p-System with Damping
C Berthon, M Bessemoulin-Chatard, H Mathis
arXiv preprint arXiv:1609.01436, 2016
162016
Uniform L^{\infty} Estimates for Approximate Solutions of the Bipolar Drift-Diffusion System
M Bessemoulin-Chatard, C Chainais-Hillairet, A Jüngel
International Conference on Finite Volumes for Complex Applications, 381-389, 2017
82017
Convergence of a monotone nonlinear DDFV scheme for degenerate parabolic equations
M Saad, M Ghilani, M Bessemoulin-Chatard
7*2018
Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie
M Bessemoulin-Chatard
Université Blaise Pascal-Clermont-Ferrand II, 2012
62012
Uniform-in-time bounds for approximate solutions of the drift–diffusion system
M Bessemoulin-Chatard, C Chainais-Hillairet
Numerische Mathematik 141 (4), 881-916, 2019
52019
Convergence rate of an asymptotic preserving scheme for the diffusive limit of the p-system with damping
S Bulteau, C Berthon, M Bessemoulin-Chatard
Communications in Mathematical Sciences, 2017
22017
A Riemann solution approximation based on the zero diffusion–dispersion limit of Dafermos reformulation type problem
C Berthon, M Bessemoulin-Chatard, A Crestetto, F Foucher
Calcolo 56 (3), 28, 2019
12019
Preserving monotony of combined edge finite volume–finite element scheme for a bone healing model on general mesh
M Bessemoulin-Chatard, M Saad
Journal of Computational and Applied Mathematics 309, 287-311, 2017
12017
Monotone Combined Finite Volume-Finite Element Scheme for a Bone Healing Model
M Bessemoulin-Chatard, M Saad
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and …, 2014
12014
AN ASYMPTOTIC PRESERVING AND WELL-BALANCED SCHEME FOR THE SHALLOW-WATER EQUATIONS WITH MANNING FRICTION
C BERTHON, M BESSEMOULIN-CHATARD, S BULTEAU
Convergence rate of an asymptotic preserving scheme for the diffusive limit of the p-system with damping
C Berthon, M Bessemoulin-Chatard, S Bulteau
The system can't perform the operation now. Try again later.
Articles 1–20