A finite volume scheme for nonlinear degenerate parabolic equations M Bessemoulin-Chatard, F Filbet SIAM Journal on Scientific Computing 34 (5), B559-B583, 2012 | 133 | 2012 |
A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme M Bessemoulin-Chatard Numerische Mathematik 121 (4), 637-670, 2012 | 102 | 2012 |
On discrete functional inequalities for some finite volume schemes M Bessemoulin-Chatard, C Chainais-Hillairet, F Filbet IMA Journal of Numerical Analysis 35 (3), 1125-1149, 2014 | 100 | 2014 |
A finite volume scheme for a Keller–Segel model with additional cross-diffusion M Bessemoulin-Chatard, A Jüngel IMA Journal of Numerical Analysis 34 (1), 96-122, 2014 | 58 | 2014 |
Study of a finite volume scheme for the drift-diffusion system. asymptotic behavior in the quasi-neutral limit M Bessemoulin-Chatard, C Chainais-Hillairet, MH Vignal SIAM Journal on Numerical Analysis 52 (4), 1666-1691, 2014 | 42 | 2014 |
Study of a finite volume scheme for the drift-diffusion system. asymptotic behavior in the quasi-neutral limit M Bessemoulin-Chatard, C Chainais-Hillairet, MH Vignal SIAM Journal on Numerical Analysis 52 (4), 1666-1691, 2014 | 42 | 2014 |
Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems M Bessemoulin-Chatard, C Chainais-Hillairet Journal of Numerical Mathematics 25 (3), 147-168, 2017 | 33 | 2017 |
Asymptotic Behavior of the Scharfetter–Gummel Scheme for the Drift-Diffusion Model M Chatard Finite Volumes for Complex Applications VI Problems & Perspectives, 235-243, 2011 | 29 | 2011 |
Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations M Bessemoulin-Chatard, M Herda, T Rey arXiv preprint arXiv:1812.05967, 2018 | 28 | 2018 |
Numerical Convergence Rate for a Diffusive Limit of Hyperbolic Systems: p-System with Damping C Berthon, M Bessemoulin-Chatard, H Mathis arXiv preprint arXiv:1609.01436, 2016 | 16 | 2016 |
Uniform L^{\infty} Estimates for Approximate Solutions of the Bipolar Drift-Diffusion System M Bessemoulin-Chatard, C Chainais-Hillairet, A Jüngel International Conference on Finite Volumes for Complex Applications, 381-389, 2017 | 8 | 2017 |
Convergence of a monotone nonlinear DDFV scheme for degenerate parabolic equations M Saad, M Ghilani, M Bessemoulin-Chatard | 7* | 2018 |
Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie M Bessemoulin-Chatard Université Blaise Pascal-Clermont-Ferrand II, 2012 | 6 | 2012 |
Uniform-in-time bounds for approximate solutions of the drift–diffusion system M Bessemoulin-Chatard, C Chainais-Hillairet Numerische Mathematik 141 (4), 881-916, 2019 | 5 | 2019 |
Convergence rate of an asymptotic preserving scheme for the diffusive limit of the p-system with damping S Bulteau, C Berthon, M Bessemoulin-Chatard Communications in Mathematical Sciences, 2017 | 2 | 2017 |
A Riemann solution approximation based on the zero diffusion–dispersion limit of Dafermos reformulation type problem C Berthon, M Bessemoulin-Chatard, A Crestetto, F Foucher Calcolo 56 (3), 28, 2019 | 1 | 2019 |
Preserving monotony of combined edge finite volume–finite element scheme for a bone healing model on general mesh M Bessemoulin-Chatard, M Saad Journal of Computational and Applied Mathematics 309, 287-311, 2017 | 1 | 2017 |
Monotone Combined Finite Volume-Finite Element Scheme for a Bone Healing Model M Bessemoulin-Chatard, M Saad Finite Volumes for Complex Applications VII-Elliptic, Parabolic and …, 2014 | 1 | 2014 |
AN ASYMPTOTIC PRESERVING AND WELL-BALANCED SCHEME FOR THE SHALLOW-WATER EQUATIONS WITH MANNING FRICTION C BERTHON, M BESSEMOULIN-CHATARD, S BULTEAU | | |
Convergence rate of an asymptotic preserving scheme for the diffusive limit of the p-system with damping C Berthon, M Bessemoulin-Chatard, S Bulteau | | |