Follow
Liam Hodgkinson
Title
Cited by
Cited by
Year
Lipschitz recurrent neural networks
NB Erichson, O Azencot, A Queiruga, L Hodgkinson, MW Mahoney
arXiv preprint arXiv:2006.12070, 2020
1212020
Multiplicative noise and heavy tails in stochastic optimization
L Hodgkinson, M Mahoney
International Conference on Machine Learning, 4262-4274, 2021
792021
Noisy recurrent neural networks
SH Lim, NB Erichson, L Hodgkinson, MW Mahoney
Advances in Neural Information Processing Systems 34, 5124-5137, 2021
532021
Stochastic continuous normalizing flows: training SDEs as ODEs
L Hodgkinson, C van der Heide, F Roosta, MW Mahoney
Uncertainty in Artificial Intelligence, 1130-1140, 2021
37*2021
The reproducing Stein kernel approach for post-hoc corrected sampling
L Hodgkinson, R Salomone, F Roosta
arXiv preprint arXiv:2001.09266, 2020
322020
Taxonomizing local versus global structure in neural network loss landscapes
Y Yang, L Hodgkinson, R Theisen, J Zou, JE Gonzalez, K Ramchandran, ...
Advances in Neural Information Processing Systems 34, 18722-18733, 2021
302021
Generalization bounds using lower tail exponents in stochastic optimizers
L Hodgkinson, U Simsekli, R Khanna, M Mahoney
International Conference on Machine Learning, 8774-8795, 2022
28*2022
Test accuracy vs. generalization gap: Model selection in nlp without accessing training or testing data
Y Yang, R Theisen, L Hodgkinson, JE Gonzalez, K Ramchandran, ...
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
25*2023
Stateful ODE-nets using basis function expansions
A Queiruga, NB Erichson, L Hodgkinson, MW Mahoney
Advances in Neural Information Processing Systems 34, 21770-21781, 2021
132021
Implicit Langevin algorithms for sampling from log-concave densities
L Hodgkinson, R Salomone, F Roosta
Journal of Machine Learning Research 22 (136), 1-30, 2021
132021
Fat–tailed variational inference with anisotropic tail adaptive flows
F Liang, M Mahoney, L Hodgkinson
International Conference on Machine Learning, 13257-13270, 2022
122022
Shadow manifold hamiltonian monte carlo
C van der Heide, F Roosta, L Hodgkinson, D Kroese
International Conference on Artificial Intelligence and Statistics, 1477-1485, 2021
92021
When are ensembles really effective?
R Theisen, H Kim, Y Yang, L Hodgkinson, MW Mahoney
Advances in Neural Information Processing Systems 36, 2024
82024
Normal approximations for discrete-time occupancy processes
L Hodgkinson, R McVinish, PK Pollett
Stochastic Processes and their Applications 130 (10), 6414-6444, 2020
82020
The interpolating information criterion for overparameterized models
L Hodgkinson, C van der Heide, R Salomone, F Roosta, MW Mahoney
arXiv preprint arXiv:2307.07785, 2023
72023
Monotonicity and double descent in uncertainty estimation with gaussian processes
L Hodgkinson, C Van Der Heide, F Roosta, MW Mahoney
International Conference on Machine Learning, 13085-13117, 2023
72023
Generalization Guarantees via Algorithm-dependent Rademacher Complexity
S Sachs, T van Erven, L Hodgkinson, R Khanna, U ªimºekli
The Thirty Sixth Annual Conference on Learning Theory, 4863-4880, 2023
52023
A heavy-tailed algebra for probabilistic programming
FT Liang, L Hodgkinson, MW Mahoney
Advances in Neural Information Processing Systems 36, 2024
42024
Fast approximate simulation of finite long-range spin systems
R McVinish, L Hodgkinson
The Annals of Applied Probability 31 (3), 1443-1473, 2021
32021
Compressing deep ode-nets using basis function expansions
A Queiruga, NB Erichson, L Hodgkinson, MW Mahoney
arXiv preprint arXiv:2106.10820, 2021
22021
The system can't perform the operation now. Try again later.
Articles 1–20