Follow
Monica Visan
Monica Visan
Verified email at math.ucla.edu - Homepage
Title
Cited by
Cited by
Year
The nonlinear Schrödinger equation with combined power-type nonlinearities
T Tao, M Visan, X Zhang
Communications in Partial Differential Equations 32 (8), 1281-1343, 2007
3192007
Nonlinear Schrödinger equations at critical regularity
R Killip, M Visan
Evolution equations 17, 325-437, 2013
2872013
The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions
M Visan
2752007
Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R 1+ 4
E Ryckman, M Visan
American journal of mathematics 129 (1), 1-60, 2007
2562007
The cubic nonlinear Schrödinger equation in two dimensions with radial data
R Killip, T Tao, M Vișan
Journal of the European Mathematical Society 11 (6), 1203-1258, 2009
2532009
The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher
R Killip, M Visan
American Journal of Mathematics 132 (2), 361-424, 2010
2402010
Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions
T Tao, M Visan, X Zhang
1742007
Minimal-mass blowup solutions of the mass-critical NLS
T Tao, M Visan, X Zhang
Walter de Gruyter GmbH & Co. KG 20 (5), 881-919, 2008
1552008
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher
R Killip, M Visan, X Zhang
Analysis & PDE 1 (2), 229-266, 2009
1472009
Stability of energy-critical nonlinear Schr\" odinger equations in high dimensions
T Tao, M Visan
arXiv preprint math/0507005, 2005
1462005
KdV is well-posed in
R Killip, M Viºan
Annals of Mathematics 190 (1), 249-305, 2019
1412019
Dispersive equations and nonlinear waves
H Koch, D Tataru, M Visan
Oberwolfach Seminars 45, 2014
1122014
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
R Killip, C Miao, M Visan, J Zhang, J Zheng
Mathematische Zeitschrift 288, 1273-1298, 2018
98*2018
Energy-Supercritical NLS: Critical [Hdot] s-Bounds Imply Scattering
R Killip, M Visan
Communications in Partial Differential Equations 35 (6), 945-987, 2010
982010
Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on
R Killip, T Oh, O Pocovnicu, M Viºan
Archive for Rational Mechanics and Analysis 225, 469-548, 2017
912017
The focusing cubic NLS with inverse-square potential in three space dimensions
R Killip, J Murphy, M Visan, J Zheng
892017
The defocusing energy-supercritical nonlinear wave equation in three space dimensions
R Killip, M Visan
Transactions of the American Mathematical Society 363 (7), 3893-3934, 2011
872011
The energy-critical NLS with inverse-square potential
R Killip, C Miao, M Visan, J Zhang, J Zheng
arXiv preprint arXiv:1509.05822, 2015
852015
Low regularity conservation laws for integrable PDE
R Killip, M Viºan, X Zhang
Geometric and functional analysis 28, 1062-1090, 2018
832018
Blowup behaviour for the nonlinear Klein–Gordon equation
R Killip, B Stovall, M Visan
Mathematische Annalen 358, 289-350, 2014
712014
The system can't perform the operation now. Try again later.
Articles 1–20